Entered by Cheryl Borgman 8/19/18

Preparation of electrocompetent cells Janes Lab Protocols

Protocol adapted from *Molecular Cloning, A Laboratory Manual 4th edition* by Green and Sambrook from CSH Press. 2012

- 1. Inoculate a single colony of the specific *E. coli* strain from a fresh agar plate into a flask containing 50 mL LB medium. Incubate the culture overnight at 37°C with vigorous aeration (250 rpm).
- 2. Inoculate 500 mL of prewarmed LB medium in a 2 L flask with 25 mL of the overnight culture. Incubate the flasks at 37°C in a shaking incubator.
- 3. Measure the OD₆₀₀ of the growing culture at least every 20 min.
 - The spectrophotometer is kept in the cabinet over bench #7.
- 4. When OD₆₀₀ is approaching 0.4, rapidly transfer the flask to an ice-water bath for 15–30 min. Swirl the culture occasionally to ensure that cooling occurs evenly. In preparation for the next step, place the centrifuge bottles in the ice-water bath.
 - It is critical that the temperature of the bacteria be maintained at 4°C.
- 5. Transfer the culture to ice-cold centrifuge bottles.
 - For best yield use conical centrifuge bottles. We use two 250 ml conical bottles.
- 6. Centrifuge at 1000 rcf for 15 min at 4°C. Decant the supernatant and resuspend the cell pellet in equal volume (250 mL each) of pure ice-cold Milli-Q water by gently pipetting up and down.
- 7. Centrifuge at 1000 rcf for 20 min at 4°C. Decant the supernatant and resuspend the cell pellet in half volume (125 mL each) ice-cold 10% glycerol.
- 8. Centrifuge at 1000 rcf for 20 min at 4°C. Decant the supernatant and resuspend the cell pellet in 10 mL ice-cold 10% glycerol.
 - Take care when decanting as bacterial pellets are not very adherent in 10% glycerol.
- 9. Centrifuge at 1000 rcf for 20 min at 4°C. As soon as the centrifuge stops, carefully decant the supernatant and use a Pasteur pipette attached to a vacuum line to remove any remaining drops of buffer. Resuspend the pellet in 1 mL of ice-cold GYT medium.
 - Resuspend by swirling rather than pipetting or vortexing.
- 10. Measure the OD_{600} of a 1:100 dilution of the cell suspension. Dilute the cell suspension to a concentration of 2 x 10^{10} to 3 x 10^{10} cells/mL (1.0 OD_{600} = ~2.5 x 10^{8} cells/ml) with ice-cold GYT medium.
- 11. Dispense 50 μ L aliquots of the cell suspension into sterile, ice-cold 1.5 mL microfuge tubes, drop them into a bath of LN₂ before transfer to a -80° C freezer.
- 12. Remove one aliquot and test the efficiency of the preparation using 10 pg and 50 pg of supercoiled plasmid DNA (20 uL cells/concentration). Expect the efficiency of transformation of the preparation to be ~10⁹ colonies/mg of plasmid DNA and the number of transformants should be proportional to DNA concentration.

Preparation of electrocompetent cells

Janes Lab Protocols

Buffer recipes

• GYT medium (for 100 mL total volume):

10 ml of Glycerol (final conc: 10% v/v)

0.125 g of Yeast Extract (final conc: 0.125% w/v)

0.25 g of Tryptone (final conc: 0.25% w/v)
Bring total volume to 100 mL with MilliQ water

Sterilize the medium by passing through a pre-rinsed 0.22 µm filter. Store in 2.5 mL aliquots at 4°C.

SOB medium (for 1 L final volume):

Start with 950 ml Milli-Q water

Add 20 g Tryptone

5 q Yeast Extract

0.5 g NaCl

Dissolve completely, then add

10 ml of a 250 mM solution of KCl (Dissolve 1.86 g of KCl in 100 mL Milli-Q water)

Adjust the pH to 7.0 with 5 N NaOH (~0.2 mL)

Bring volume to 1 L with Milli-Q water

Sterilize by autoclaving

Just before use, add 5 mL of sterile 2 M MgCl₂ (final conc: 10 mM, see preparation below)

2 M MgCl₂ (for 100 mL final volume):

90 mL Milli-Q water

19 g MgCl₂ (40.66 g of MgCl₂-8H₂O)

Bring total volume to 100 mL

Sterilize by autoclaving

SOC medium (for 1 L final volume):

Start with 950 mL Milli-Q water

Add 20 g Tryptone

5 g Yeast Extract

0.5 g NaCl

Dissolve completely, then add

10 ml of a 250 mM solution of KCI (Dissolve 1.86 g of KCI in 100 mL Milli-Q water)

Adjust the pH to 7.0 with 5 N NaOH (~0.2 mL)

Bring volume to 1 L with Milli-Q water

Sterilize by autoclaving

Once cooled, add

20 mL 1 M Glucose (Dissolve 18 g Glucose in 90 mL Milli-Q water, bring total volume to 100 mL and sterilize the medium by passing through a pre-rinsed 0.22 µm filter)

• LB medium (for 1 L total volume):

To 950 mL Milli-Q water, add

5 g of Yeast Extract

10 g of Tryptone

10 g NaCl (Janes Lab conc – CSH protocol recommends 5 g NaCl)

pH to 7.0

Bring total volume to 1 L with Milli-Q water

Sterilize by autoclaving