Laser-capture microdissection and poly(A) amplification

Learning objectives

 Understand the distinctions between different LCM formats and the considerations for effective LCM

 Appreciate the rationale and critical steps for poly(A) amplification of microdissected material

 Implement a pilot poly(A) optimization for a new biological context

Types of laser capture

- UV laser cutting (Leica, Arcturus):
 - Fantastic accuracy and precision but RNA destroyed at the edge
 - Requires special slides
- IR polymer wetting (Arcturus):
 - Requires extensive optimization for accuracy
 - Precision is local to the slide-cap placement
 - Very mild toward biomolecules
 - Requires special caps for pickup

4 Extract molecules from target cells

Arcturus Bioscience http://www.arctur.com

Successes

Before LCM After LCM Melanoma TILs LCM cap Before LCM After LCM Mouse **OPCs**

Key considerations for LCM

- (New) Cryosectioning at cold temperatures (≤20°C and 24°C if possible) to achieve opaque NEG50 on the slides
- Optimized dehydration of the sample
 - Too wet: no pickup
 - Too dry: excessive collateral pickup
- Laser parameters (voltage, duration) that determine the effective spot size

Watch for leaks! Practice on an old cap

4 Extract molecules from target cells

Arcturus Bioscience http://www.arctur.com

RNA elution from LCM cap

- 1 hr digestion with proteinase K at 42°C
 - Frees mRNA from fixed polysomes
 - Degrades RNAses
- Centrifuge into large PCR tubes
- Stop digestion with high concentration of PMSF and supplement with RNAse inhibitors
 - Excess PMSF self-inactivates by hydrolysis
 - Other serine protease inhibitors will NOT substitute

Single-cell cDNA amplification In-house modifications (part 1)

Replaced

Minor improvements

Major improvements

Single-cell cDNA amplification In-house modifications (part 2)

Replaced

Minor improvements

Major improvements

Optimizing poly(A) PCR for a biological context

- Two key amplification parameters: number of amplification cycles and amount of AL1 primer
- Number of amplification cycles:
 - Yields more poly(A) cDNA with each cycle
 - Efficiency declines to zero when saturated
 - Saturated amplifications are not quantitative
- Amount of AL1 primer:
 - Promotes amplification efficiency
 - May cause high-abundant targets to saturate early

An example of poly(A) optimization

qPCR of poly(A) samples will be introduced tomorrow (Chun-Chao)

Questions?